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How You Split Matters: Data Leakage and Subject
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£7 Introduction

* Longitudinal data offers critical insights into disease
progression and treatment efficacy

* Improper handling of longitudinal data poses issues
even in 3D-based medical image analysis .

* The reliability of deep learning models can be
jeopardized by biases, such as data leakage

Q Methods

* 3D CNN for Alzheimer’s Disease (AD) diagnosis with
longitudinal brain MRI data from ADNI

[:>2) Discussion

* How You Split Matters
The choice of data splitting strategy during CV
significantly influences the performance of Al models
Data Leakage and Identity Confounding
Improper data splitting can lead to data leakage,
affecting model generalization and causing identity
confounding within the models
* Shortcut Learning Revealed by GradCAM
GradCAM visualization highlights potential shortcut
learning in models from record-wise and late splitting
strategies possibly due to identity confounding
* Validating Robustness with Subject-Wise Split
This study validates previous findings suggesting

Evaluation Scheme
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subject-wise split as a less data leakage-prone
approach

Future Directions

Promoting Subject-Wise Split: future research should
consider subject-wise split for more reliable model
evaluation and development

Investigating Data Variance and Sensitive Attributes:
Further research should delve into the correlation
between data splitting strategies and data variance
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(i) Correctly classified

Data Splitting Strategy Impact O v v

* Record-wise split excels during CV, closely followed by
late split, but performs the worst on hold-out data

* Subject-wise split performs poorest during CV but
generalizes best to hold-out data

 Data splitting strategy influences model performance
(P=0.0389)

MRI Sequence Influence

* The choice of T1 or T2 MRI sequences has no significant
impact on classification performance (P=0.7921)

Insights from GradCAM Visualization

* Shortcut learning was observed in record-wise and late
splits
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